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Appendix A : Proof of propositions and lemmas
Appendix B : An alternative specification of R&D

Appendix C : Transitional dynamics

This appendix charaterizes the dynamical system of the baseline model. Define four trans-
formed variables {z1 ¢, 224,234, 24 } Dy
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where AN = aNLN and A} = a7L;] are the total asset value of households in the North and the
South, respectively. Thus, QN /Q; = QN/(QN + Q7)) = z44/(1 + za;) and QF / Qs = 1/(1 + z4y).
Taking the log of z1; and differentiating the resulting equation with respect to time yields
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is derived from (33) and [N, = LN / Lf] is the share of R&D labor in the North.

rt —
Similarly, differentiating the log of zo; and z3; with respect to time yields
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where the condition ¢N/cN = ¢7/c? = Y;/Y; — L;/L; implied by (5) and the Euler equation
(3) have been applied. Moreover from (2), we can show that AN = r, AN + wNLN — cNLN and
A? = 1t A? + wiLy — ¢ L7, which implies that
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where AN = pwlN 2 ¢and A} = ywi Q7 Qt are given by (A.4) and (A.5), respectively. To derive
cNLN /AN, we first combine the aggregate form of (21) with AN = ;AN +wNLN — cNLN yielding
1 AN + wNLN — NLN = roN — ntN—i—wf\]Lﬁ\]t & cNLN = wNLN + 7N — ANoN, (C.5)
Substituting (C.5) back into (C.4), together with the definition of A{\] , gives rise to
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where we have applied (15) in the second equality, (12) and (14) to substitute for the expression
of LY, in the third equality, (C.2) in the forth equality, and 1Y, = LY,/LN = 1 — 17 in the last
equality. Then, we substitute (C.6) into (C.3) to rewrite Z/z5; as
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Similarly, to derive cjL7/A?, we first aggregate (22) such that fgs 07 (j)dj = re fes 07 (j)dj —



/. 05 7 (j)dj + AN f9f o7 (j)dj. Using this equation, we then have
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where we have used (15) and (16) in the third equality. By combining (C.8) and A} = r;A7 +
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Inserting (C.9) back into (C.4) yields
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where we have used lit = Lit / LtS =1- lﬁt and (16) in the second equality, (13) and (14)

to substitute for the expression of L3, in the third equality, and (C.2) in the last equality. By
applying (C.10), we can rewrite Z3;/z3; as in (C.3) as
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Then taking the log of z4; and differentiating the resulting equation with respect to time yield
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where (A.1) and (A.2) have been used in the second equality, and according to (37), /\f is a
function of l,sl 1 214, and zy; such that
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Notice that the differential equations (C.1), (C.7), (C.11) and (C.12) contain seven endogenous
variables in total, namely {z1, 224, 234, 24, li\,’t, lit, w}. However, it will be shown that, in the
following steps, variables {lfc\,’t, lf/t, w;} are implicit functions of {z14, 224,23+, 24+ }. Hence, (C.1),
(C.7), (C.11) and (C.12) constitute a system of autonomous differential equations characterizing
the model’s dynamical behaviors.

First, we express the relative wage rate w; as a function of z3;, lfc\,’t, and li/t. From (12), (13),

and (14), we have

NTN
Qt Lx,[

N 7N N, .N\—c S\
lxi,t oy Lx,tz _ & sl-o (]4 Wy ) Za — « s1-v s w2
5,7 o, 1-aps ™ 1-ua (uSwd)—~ M T 1—a N oo
xt o Srla Ly, pwowy H

QL7

and thus

lst /e M e VS 1
_ X, = /o
“ (ZJIc\,jt> <1—(x> o (VN) e (149

Next, we construct two equations of lfc\ft and lit that are solved by {z1, 224, 234,24+ }. We



substitute (7) and (8) into (4) to reexpress the equilibrium final-good production function as
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where (14), (32), and (36) have been applied in sequence. From (15), the aggregate expenditure
on Northern production labor is given by
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From (18), we can derive the total value of innovative R&D firms such that
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where the last equality is obtained by using (C.16). Thus, we have
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where (C.2) and (C.15) have been applied. (C.18) is then the first equation that solves for IV
ZX
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Similarly, from (16), the aggregate expenditure on Southern production labor is given by
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The total value of adaptive R&D firms is derived by using (20) such that
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where the relation 8N /67 = AN /A7 implied by (25), (26), and (C.19) has been used in sequence.
Therefore, using (C.15) and (C.20) allows us to rewrite z3; as
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(C.21) is then the second equation that solves for I, and lit. Thus, (C.18) and (C.21) imply that

x,t
both li‘ft and li/t are implicit functions of z1, zp 4, z3¢ and z4;. Given this result, (C.1), (C.7), (C.11)
and (C.12) together represent the dynamical system of the model.
To linearize the model around the steady-state equilibrium, we slightly re-organize the system

as equations of {z14, 224,23, 24+, w; }. First, combining (C.18) and (C.21) yields
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Then substituting (C.14) into (C.22) gives rise to
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By rearranging (C.18), we can show that
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By using (C.14) to replace lit and (C.24) to replace li\,]t in (C.23), we can rewrite (C.23) such that
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This equation implicitly solves w; as a function of the four transformed variables {z1, 224,23,z }-

Similarly, using (C.14) and (C.23) to substitute for lit and li\/’t, we can rewrite the four differential
equations of {z1 4,224,234, 24, } such that
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Due to its complexity, we resort to Mathametica for linearization and compute the eigenvalues of
the Jacobian matrix. The matrix takes the form of
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where {i,j} = {1,2,3,4}. Substituting the numerical values in our calibration into the Jacobian
matrix yields

—-0.1677 —0.0610 0.0079  0.0701

0.4407  0.6242 —0.0535 —0.2830

0.8073 —0.5173 0.4355 —0.9990

—3.3417 —-1.5475 0.0077 —3.6304

In this case, the eigenvalues for this Jacobian matrix are given by {—3.6737,0.7192,0.3880, —0.1719},
respectively. Therefore, the dynamics of this equation system is characterized by saddle-path sta-
bility, implying that the global economy is on a unique and stable balanced growth path.
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Appendix D : The variety-expansion model

To examine the robustness of our results, we consider an extension in which the process of
innovation is variety expansion, following the framework of Gustafsson and Segerstrom (2011).
The notations for the variables in the baseline model remain the same as their parallel counter-
parts in this extended model. Moreover, we focus on the steady-state equilibrium.

The production function of final goods is altered to

Y = { /0 mf[xto)]"fdj}”ul, (D.1)

where m; is the number of intermediate-good varieties. Therefore, the demand function of x;(j)
is given by
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where the price of final goods P; = { [ [p:(j)]'~7dj}!/ (1-) js normalized to unity. In this variety-
expansion framework, new products are invented and manufactured in the North, whereas old
products remain being manufacturing in the South once the technology of manufacturing these
products has been transferred. Therefore, the product cycle becomes one-way, implying that As-
sumption ?? no longer applies. The production functions and price strategies remain unchanged,
with patent breadth in each country determining the monopolistic prices. The profits for a typical
Northern monopolist and a Southern affiliate for any variety j € [0, m;] are given by
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0 (uwi/8)”
respectively, given that the monopolistic price and profit flow are identical across varieties. More-
over, Assumption 2 still holds to ensure that Northern monopolists are willing to shift their
production to the South, namely 77 > 7Y holds.
To develop a new product variety, a representative Northern firm i devotes 3/ mtg units of
labor in innovative R&D activities. The flow of new products developed at time t is given by
1 (i) = meﬁ\],t(i )/ B. Thus, the aggregate flow of new products developed in the North is
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where LY i Lﬁ\’,t(i)di denotes the aggregate R&D labor in the North. Free entry into R&D

r,t =
yields the zero-expected-profit condition for innovative R&D such that
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Similarly, the number of varieties transferred to the South by the foreign affiliate of a Northern
monopolist is given by 1} (i) = mef, +(i)/7. Thus, the aggregate flow of varieties shifted to the
South is :
S
g miLy,
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where LY, = [ Lrslt(i)di denotes the aggregate R&D labor in the South. Moreover, denote by

r,

AS = 117 /m; the rate of technology transfer. Free entry into R&D yields the zero-expected-profit
condition for adaptive R&D such that
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In addition, the no-arbitrage conditions that determine the values of v and v} are, respectively,
given by
roN = 7N +oN, (D.9g)

and
1oy = 15 + 05, (D.10)

Next, we consider the labor-market-clearing conditions in the North and the South. The
Northern labor-market-clearing condition is given by
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where 0) = m}Y /m; is the share of varieties produced in the North, L, , is the average Northern

production labor, and ®; = m}—é /LN is the average productivity per Northern worker. The
Southern labor-market-clearing condition is given by
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t t
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where 07 = m? /m; is the share of varieties produced in the South and fi,t is the average Southern
production labor.

In the steady-state equilibrium, ®; = ® must be constant, which yields the growth rate of the
number of varieties such that ¢ = ni1;/m; = g1 /(1 — ¢), and the condition such that mf / mf =
N /mN = rii;/m;. In addition, according to the rate of technology transfer A° = 71} /m;, we
obtain the steady-state shares of varieties in the North and the South as follows:

s _ A g§—A°

0 ;N = . (D.13)
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To derive the steady-state innovative R&D condition, we take the log of (D.6) and differentiate
the resulting equation to obtain o) /oN = (1 — ¢)g. Substituting this equation into (D.9) yields

oN = 71N /(p + ¢g). Then, combining (D.3) and (D.6) with the above equation yields the steady-

10



state innovative R&D condition such that
—N
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Similarly, from (D.8) we have ¢ /vy = (1 — ¢)g. Substituting it into (D.10) yields v} = 77 /(o +
¢g). Combining this equation with (D.4) and (D.6) yields the steady-state adaptive R&D condi-
tion such that . N
L,m L,,m
(1 = 1) = (1 = D=3 = 7(p +28)®. (D.15)
t t

Then, combining (D.11) and (D.14) generates the Northern steady-state condition such that

(0 +E8)(g—A%)
g(uN —1)

This equation is the counterpart condition against (46) in the sense that ® is positively correlated
with AS. Additionally, the Southern steady-state condition is obtained by combining (D.11),
(D.12), (D.14), and (DD.15), which is given by

qm%l—M[MP+Qﬂv+&w
ag us—1

B [ +g] =1. (D.16)

+ vg} =1, (D.17)

which is also qualitatively similar to (47) in the sense that ® is negatively correlated with AS.
In this case, equations (D.16) and (D.17) together determine a unique steady-state solution of
two unknowns {®, A%}, which is graphically illustrated as in Figure 1. Furthermore, dividing
(D.14) by (D.15) leads to the equation that pins down the steady-state relative wage rate, which
is identical to (54). Therefore, the static analysis of a change in N or u° on the rate of relative
wage w, the rate of international technology transfer A%, and the temporary innovation rate in
the North are robust to the counterparts in the baseline model.
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Appendix E : The model with trade costs

In this appendix, we extend the baseline model by incorporating positive trade costs between
the countries. Specifically, we follow Gustafsson and Segerstrom (2010) to assume that trade
costs take the "iceberg" form such that T > 1 unites of a product must be produced and exported
in order to have one unit arriving at its destination. Again, we only illustrate the main parts that
are changed in this extended model.

To simplify the analysis, we assume that households consume differentiated goods produced
in both countries. The discounted lifetime utility of a typical household in economy i € {N, S}
is given by

Uiz/o e~ =8t In i (1)dt, (E.1)

where the static utility is given by

) 1 ., Yoa
o= { [ o7l E2)

Solving the consumer’s utility-maximization problem yields the individual consumer’s demand
function such that - ,
[Pt ()I7E;

x4(j) = (i (E3)
t

where E! is the per capita consumer expenditure in country i at time t and P! = { fol [pi(j)] o}/ -0
is an index of consumer prices. Maximizing (E.1) subject to (E.2) where (E.3) has been used to
substitute for xi(j) yields the Euler equation such that

BB, E
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In this extension, we focus on the steady-state equilibrium where both wage rates and consump-
tion expenditures are stationary over time (i.e., wf\] = wV, wts = wd, Ef\’ = EN, and Ef = ES) , SO
using (E.4) implies that r; = p. In addition, the Southern wage rate is chosen as the numeraire
price (wf = 1), so all prices are measured relative to the price of Southern labor. Then the wage
rate of the North relative to the South is given by w = wV.

In the presence of trade costs, Northern consumers face different prices than Southern con-
sumers. This alters the pricing strategy of Northern quality leaders and Southern affiliates. The
condition wé > 1 is changed to wé > T to take into account the additional transportation cost,
and Assumption 1 is altered to wé < (z/uN) for ensuring the two-product cycle.

To derive the profits of Northern leaders and Southern affiliates, we first show the demand
functions of Northern and Southern consumers. On the one hand, the demand of a North-

ern consumer for a domestically produced product is xN4 = [pN?(j)]=7EN/(PN)!=7 and the

demand for an imported good (exported by the South) is x7* = [p7*(j)]""EN/(PN)'=?. Thus,
1/(1-0)

the Northern price index is given by PN = {fefN [pNe(H]P = + fef [pf*(j)]l_”} . On the

other hand, the demand of a Southern consumer for a domestically produced product is x7% =

12



[p?4(j))~"ES/(P?)'~¢ and the demand for an imported good (exported by the North) is xN* =

[pN*(j)]"7ES /(P?)'~°. Thus, the Southern price index is P} = {fef’ [pN* (N7 + fets [p?? (j)]l_”}l/(] U).

In the presence of trade costs, the Northern quality leader in industry j € [0, 1] sets the domes-
tic monopolistic price pN(j) to uNw/ [z )] and the export price pN*(j) to TuNw/[z1)]. Given
households” demand functions, the monopolistic profit of a Northern quality leader comprises
of domestic and export profits such that

Tl—ULSES LNEN
L+ b (E5)
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gy (]) (V )(]/lN(U)‘T (Pts)l_a + (PtN)l_‘T
The Southern affiliate sets the domestic monopolistic price p3(j) to u°/(6z™U)) and the export
price p{*(j) to TS/ (6z1)). Given households’ demand functions, the monopolistic profit for a
Southern affiliate is given by

sin s n3t() (0N [TOLYEN LfES}
(1) = (= 1)~ (;45> [(ptN)l—ff +(Pf')1*" : (E.6)

Moreover, the labor demands for an average-quality product produced by a Northern leader is
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whereas the labor demands for an average-quality product produced by a Southern affiliate is
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Using these equations, the labor demands for product j are expressed as
, ) +N , =
Lalc\{t(]) = qt(])L ; Li,t(]) = qt(]) Lx,t' (E.9)

t
Q Qt

The behaviors of innovative and adaptive R&D sectors follow exactly those in the baseline
setup. Following the derivation in the baseline model, we can show that equations (17)—(47)
continue to hold. Therefore, in this extension of positive trade costs, there still exists a unique
steady-state equilibrium pinning down the values of ® and A°, given that the steady-state relative
wage w is a function of the patent instruments {1, °}. However, the steady-state relative wage
equation (54) is changed. From (E.7)—~(E.8), we obtain

N T 7LIES LNEN

Ix;t _ 5(7—1 ﬁ - -0 (Pfs)lia + (ptN)lia (E )
ZS - :uS w TlfaL{\fEN LEES ’ -10
x,t (Pg\/)l—n + (ptS)l—o

Combining (44) and (45), together with (E.10), yields the equation determining the steady-state
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relative wage rate such that
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Define by # = (LNEN)/(LJE®) the aggregate consumption expenditure of Northern households

relative to Southern households. Then (E.11) can be rewritten as

i /y 1
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0
(E.14)
Comparing (E.14) to (54), it can be seen that the only difference comes from the aggregate term

() in the bracket. When 7 = 1 (i.e., a zero transportation cost), (E£.14) is reduced to (54). In this
generalized version, (46), (47) and (E.14) together constitute a system of equations that solves for
three endogenous variables {®, A%, w}.

Therefore, the static analysis of a change in u or u° on the rate of relative wage w, the rate
of international technology transfer A°, and the temporary innovation rate in the North are still
robust to the counterparts in the baseline model. More importantly, a decrease in trade costs
7 leads to no changes in the rate of international technology transfer A° and the temporary in-
novation rate in the North, but an ambiguous impact on rate of relative wage w. Specifically,
making use of (E.11), it can be shown that a decrease in 7 leads to a permanent increase (de-
crease) in w if the North is larger (smaller) than the South in terms of purchasing power (i.e.,
LVEN/(PN)10 > (<)LSES/ (PS)1-0),
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