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This appendix charaterizes the dynamical system of the baseline model. Define four trans-
formed variables {z1,t, z2,t, z3,t, z4,t} by

z1,t ≡
Lt

Q1−ξ
t

; z2,t ≡
AN

t
Yt

; z3,t ≡
AS

t
Yt

; z4,t ≡
QN

t

QS
t

,

where AN
t ≡ aN

t LN
t and AS

t ≡ aS
t LS

t are the total asset value of households in the North and the
South, respectively. Thus, QN

t /Qt = QN
t /(QN

t + QS
t ) = z4,t/(1 + z4,t) and QS

t /Qt = 1/(1 + z4,t).
Taking the log of z1,t and differentiating the resulting equation with respect to time yields

ż1,t

z1,t
= gL − (1− ξ)

Q̇t

Qt
= gL − (1− ξ)(κ − 1)λN

t = gL − (1− ξ)(κ − 1)
1− α

β
z1,tlN

r,t, (C.1)

where

λN
t =

LN
r,t

βQ1−ξ
t

=
1
β

LN
r,t

LN
t

LN
t

Lt

Lt

Q1−ξ
t

=
1− α

β
z1,tlN

r,t (C.2)
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is derived from (33) and lN
r,t ≡ LN

r,t/LN
t is the share of R&D labor in the North.

Similarly, differentiating the log of z2,t and z3,t with respect to time yields

ż2,t

z2,t
=

ȦN
t

AN
t
− Ẏt

Yt
=

ȦN
t

AN
t
− (rt − ρ)− gL and

ż3,t

z3,t
=

ȦS
t

AS
t
− (rt − ρ)− gL, (C.3)

where the condition ċN
t /cN

t = ċS
t /cS

t = Ẏt/Yt − L̇t/Lt implied by (5) and the Euler equation
(3) have been applied. Moreover, from (2), we can show that ȦN

t = rt AN
t + wN

t LN
t − cN

t LN
t and

ȦS
t = rt AS

t + wS
t LS

t − cS
t LS

t , which implies that

ȦN
t

AN
t

= rt +
wN

t LN
t

AN
t
− cN

t LN
t

AN
t

and
ȦS

t

AS
t
= rt +

wS
t LS

t

AS
t
− cS

t LS
t

AS
t

, (C.4)

where AN
t = βwN

t Q1−ξ
t and AS

t = γwS
t QS

t Q−ξ
t are given by (A.4) and (A.5), respectively. To derive

cN
t LN

t /AN
t , we first combine the aggregate form of (21) with ȦN

t = rt AN
t +wN

t LN
t − cN

t LN
t yielding

rt AN
t + wN

t LN
t − cN

t LN
t = rtvN

t − πN
t + wN

t LN
r,t ⇔ cN

t LN
t = wN

t LN
t + πN

t − λN
t vN

t . (C.5)

Substituting (C.5) back into (C.4), together with the definition of AN
t , gives rise to

ȦN
t

AN
t

= rt + λN
t −

πN
t

AN
t

= rt + λN
t −

(µN − 1)(µN)−σQt(wN
t )

1−σYt

βwN
t Q1−ξ

t

= rt + λN
t −

(µN − 1)LN
x,t

βQ1−ξ
t

Qt

QN
t

= rt +
1− α

β
z1,tlN

r,t −
(1− α)(µN − 1)(1 + z4,t)

βz4,t
lN
x,tz1,t

= rt +
1− α

β
z1,t

[
1− µN lN

x,t −
1

z4,t
(µN − 1)lN

x,t

]
,

(C.6)

where we have applied (15) in the second equality, (12) and (14) to substitute for the expression
of LN

x,t in the third equality, (C.2) in the forth equality, and lN
x,t ≡ LN

x,t/LN
t = 1− lN

r,t in the last
equality. Then, we substitute (C.6) into (C.3) to rewrite ż2,t/z2,t as

ż2,t

z2,t
= ρ− gL +

1− α

β
z1,t

[
1− µN lN

x,t −
1

z4,t
(µN − 1)lN

x,t

]
. (C.7)

Similarly, to derive cS
t LS

t /AS
t , we first aggregate (22) such that

∫
θS

t
v̇S

t (j)dj = rt
∫

θS
t

vS
t (j)dj −
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∫
θS

t
πS

t (j)dj + λN
t
∫

θS
t

vS
t (j)dj. Using this equation, we then have

ȦS
t =

∫
θS

t

[v̇S
t (j)− v̇N

t (j)]dj = (rt + λN
t )
∫

θS
t

vS
t (j)dj−

∫
θS

t

πS
t (j)dj−

[
(rt + λN)

∫
θS

t

vN
t (j)dj−

∫
θS

t

πN
t (j)dj

]
= (rt + λN

t )
∫

θS
t

[vS
t (j)− vN

t (j)]dj−
∫

θS
t

[πS
t (j)− πN

t (j)]dj

= (rt + λN
t )
∫

θS
t

γwS
t qt(j)Q−ξ

t dj−
∫

θS
t

(µS − 1)wS
t qt(j)

LS
x,t

Qt
dj +

∫
θS

t

(µN − 1)wN
t qt(j)

LN
x,t

Qt
dj

= (rt + λN
t )γwS

t QS
t Q−ξ

t − (µS − 1)wS
t LS

x,t + (µN − 1)wN
t LN

x,t
QN

t
Qt

,

(C.8)
where we have used (15) and (16) in the third equality. By combining (C.8) and ȦS

t = rt AS
t +

wS
t LS

t − cS
t LS

t , we obtain

rt AS
t + wS

t LS
t − cS

t LS
t = (rt + λN

t )AS
t −

[
(µS − 1)wS

t LS
x,t − (µN − 1)wN

t LN
x,t

QS
t

QN
t

]
⇔cS

t LS
t = wS

t LS
t − λN

t AS
t +

[
(µS − 1)wS

t LS
x,t − (µN − 1)wN

t LN
x,t

QS
t

QN
t

]
.

(C.9)

Inserting (C.9) back into (C.4) yields

ȦS
t

AS
t
= rt + λN

t −
(µS − 1)wS

t LS
x,t − (µN − 1)wN

t LN
x,t

QS
t

QN
t

γwS
t QS

t Q−ξ
t

= rt + λN
t −

(µS − 1) LS
x,t

LS
t

LS
t

Lt
− (µN − 1)ωt

LN
x,t

LN
t

LN
t

Lt
1

z4,t

γ
QS

t
Qt

Q1−ξ
t
Lt

= rt +
1− α

β
z1,tlN

r,t −
α(µS − 1)lS

x,t − (µN − 1)(1− α)ωtlN
x,t

1
z4,t

γ 1
1+z4,t

1
z1,t

= rt +
1− α

β
z1,tlN

r,t −
α(µS − 1)lS

x,t(1 + z4,t)− (µN − 1)(1− α)ωtlN
x,t

1+z4,t
z4,t

γ
z1,t,

(C.10)

where we have used lS
x,t ≡ LS

x,t/LS
t = 1 − lS

r,t and (16) in the second equality, (13) and (14)
to substitute for the expression of LS

x,t in the third equality, and (C.2) in the last equality. By
applying (C.10), we can rewrite ż3,t/z3,t as in (C.3) as

ż3,t

z3,t
= ρ− gL +

1− α

β
z1,tlN

r,t −
α(µS − 1)lS

x,t(1 + z4,t)− (µN − 1)(1− α)ωtlN
x,t

(
1+z4,t

z4,t

)
γ

z1,t. (C.11)
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Then taking the log of z4,t and differentiating the resulting equation with respect to time yield

ż4,t

z4,t
=

Q̇N
t

QN
t
− Q̇S

t

QS
t
= (κ − 1)λN

t + κλN
t

QS
t

QN
t
− λS

t − λS
t

QN
t

QS
t
+ λN

t = λN
t

(
κ − 1 +

κ

z4,t

)
− λS

t (1 + z4,t),

(C.12)
where (A.1) and (A.2) have been used in the second equality, and according to (37), λS

t is a
function of lS

r,t, z1,t, and z4,t such that

λS
t =

LS
r,t

γQ1−ξ
t

Qt

QN
t

=
1
γ

LS
r,t

LS
t

LS
t

Lt

Lt

Q1−ξ
t

Qt

QN
t

=

(
α

γ

)
lS
r,tz1,t

(
1 +

1
z4,t

)
. (C.13)

Notice that the differential equations (C.1), (C.7), (C.11) and (C.12) contain seven endogenous
variables in total, namely {z1,t, z2,t, z3,t, z4,t, lN

x,t, lS
x,t, ωt}. However, it will be shown that, in the

following steps, variables {lN
x,t, lS

x,t, ωt} are implicit functions of {z1,t, z2,t, z3,t, z4,t}. Hence, (C.1),
(C.7), (C.11) and (C.12) constitute a system of autonomous differential equations characterizing
the model’s dynamical behaviors.

First, we express the relative wage rate ωt as a function of z3,t, lN
x,t, and lS

x,t. From (12), (13),
and (14), we have

lN
x,t

lS
x,t

=

QN
t LN

x,t
Qt LN

t

QS
t LS

x,t
Qt LS

t

=
α

1− α

LN
x,t

LS
x,t

z4,t =
α

1− α
δ1−σ (µ

NwN
t )
−σ

(µSwS
t )
−σ

z4,t =
α

1− α
δ1−σ

(
µS

µN

)σ

ω−σ
t z4,t,

and thus

ωt =

(
lS
x,t

lN
x,t

)1/σ (
α

1− α

)1/σ

δ
1−σ

σ

(
µS

µN

)
z1/σ

4,t . (C.14)

Next, we construct two equations of lN
x,t and lS

x,t that are solved by {z1,t, z2,t, z3,t, z4,t}. We
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substitute (7) and (8) into (4) to reexpress the equilibrium final-good production function as

Yt =

{∫
θN

t

[xN
t (j)]

σ−1
σ dj +

∫
θS

t

[xS
t (j)]

σ−1
σ dj

} σ
σ−1

=

{∫
θN

t

[znt(j)LN
x,t(j)]

σ−1
σ dj +

∫
θS

t

[znt(j)δLS
x,t(j)]

σ−1
σ dj

} σ
σ−1

=

{∫
θN

t

[qt(j)]1/σ[qt(j)LN
x,t/Qt]

σ−1
σ dj +

∫
θS

t

[qt(j)]1/σ[δqt(j)LS
x,t/Qt]

σ−1
σ dj

} σ
σ−1

=

{∫
θN

t

qt(j)Q
1−σ

σ
t (LN

x,t)
σ−1

σ dj +
∫

θS
t

qt(j)Q
1−σ

σ
t (δLS

x,t)
σ−1

σ dj
} σ

σ−1

=
{
(LN

x,t)
σ−1

σ QN
t + (δLS

x,t)
σ−1

σ QS
t

} σ
σ−1 1

Qt

=


(

LN
x,tQN

t

QtLN
t

) σ−1
σ (

QN
t

QtLN
t

) 1−σ
σ

QN
t + δ

σ−1
σ

(
LS

x,tQS
t

QtLS
t

) σ−1
σ (

QS
t

QtLS
t

) 1−σ
σ

QS
t


σ

σ−1

1
Qt

=

{
(lN

x,t)
σ−1

σ (1− α)
σ−1

σ

(
z4,t

1 + z4,t

)1/σ

+ (δα)
σ−1

σ (lS
x,t)

σ−1
σ

(
1

1 + z4,t

)1/σ
} σ

σ−1

︸ ︷︷ ︸
Ξ

(
Q

1
σ−1
t Lt

)

(C.15)
where (14), (32), and (36) have been applied in sequence. From (15), the aggregate expenditure
on Northern production labor is given by

wN
t LN

x,t =
wN

t QN
t Yt

(µNwN
t )

σ
⇔ wN

t =
1

µN ·
(

QN
t Yt

LN
x,t

)1/σ

. (C.16)

From (18), we can derive the total value of innovative R&D firms such that

λN
t =

wN
t LN

r,t

vN
t
⇔ vN

t =
LN

r,t

λN
t µN

(
QN

t Yt

LN
x,t

)1/σ

, (C.17)

where the last equality is obtained by using (C.16). Thus, we have

z2,t =
vN

t
Yt

=
LN

r,t

λN
t µN

(
QN

t

LN
x,t

)1/σ

Y
1−σ

σ
t

=
lN
r,t(1− α)Lt

µNλN
t

(
QN

t
Qt

)1/σ

·Q1/σ

(
1

lN
x,t(1− α)Lt

)1/σ

Ξ
1−σ

σ Q−1/σ
t L

1−σ
σ

t

=
β

µNz1,t

(
z4,t

1 + z4,t

)1/σ

Ξ
1−σ

σ (1− α)−1/σ
(

lN
x,t

)−1/σ
.

(C.18)

where (C.2) and (C.15) have been applied. (C.18) is then the first equation that solves for lN
x,t and

lS
x,t. Similarly, from (16), the aggregate expenditure on Southern production labor is given by

wS
t LS

x,t = δσ−1 wS
t QS

t Yt

(µSwS
t )

σ
⇔ wS

t =
δ

σ−1
σ

µS

(
QS

t Yt

LS
x,t

)1/σ

. (C.19)
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The total value of adaptive R&D firms is derived by using (20) such that

λS
t ·
∫

θN
t

[vS
t (j)− vN

t (j)]dj = wS
t

∫
θN

t

LS
r,t(j)dj⇔ λS

t

(
θN

t

θS
t

)
AS

t = wS
t LS

r,t

⇔AS
t =

wS
t LS

r,t

λN
t

=
LS

r,t

λN
t µS

δ
σ−1

σ

(
QS

t Yt

LS
x,t

)1/σ

,

(C.20)

where the relation θN
t /θS

t = λN
t /λS

t implied by (25), (26), and (C.19) has been used in sequence.
Therefore, using (C.15) and (C.20) allows us to rewrite z3,t as

z3,t =
AS

t
Yt

=
LS

r,t

λN
t µS

δ
σ−1

σ

(
QS

t

LS
x,t

)1/σ

Y
1−σ

σ
t

=
β(1− lS

x,t)

µSz1,t(1− α)(1− lN
x,t)

(
1

1 + z4,t

) 1
σ

Ξ
1−σ

σ δ
σ−1

σ α
σ−1

σ

(
lS
x,t

)− 1
σ

(C.21)

(C.21) is then the second equation that solves for lN
x,t and lS

x,t. Thus, (C.18) and (C.21) imply that
both lN

x,t and lS
x,t are implicit functions of z1,t, z2,t, z3,t and z4,t. Given this result, (C.1), (C.7), (C.11)

and (C.12) together represent the dynamical system of the model.
To linearize the model around the steady-state equilibrium, we slightly re-organize the system

as equations of {z1,t, z2,t, z3,t, z4,t, ωt}. First, combining (C.18) and (C.21) yields

z2,t

z3,t
=

µS(1− lN
x,t)

µN(1− lS
x,t)

(z4,t)
1
σ (1− α)

σ−1
σ α

1−σ
σ δ

1−σ
σ

(
lN
x,t

lS
x,t

)− 1
σ

. (C.22)

Then substituting (C.14) into (C.22) gives rise to

lS
r,t

lN
r,t

=
z3,t

z2,t

(
1− α

α

)
ωt. (C.23)

By rearranging (C.18), we can show that

z2,t =
β

µNz1,t

(
z4,t

1 + z4,t

) 1
σ

(
Ξ

lN
x,t

) 1−σ
σ

(lN
x,t)

1−σ
σ (1− α)−

1
σ (lN

x,t)
− 1

σ

=
β

µNz1,t

(
z4,t

1 + z4,t

) 1
σ

[Ξ(ωt)]
1−σ

σ (1− α)−
1
σ (lN

x,t)
−1,

(C.24)

where

Ξ(ωt) =

(1− α)
σ−1

σ

(
z4,t

1 + z4,t

) 1
σ

+ (δα)
σ−1

σ

[(
α

1− α

)
δ1−σ

(
µS

µN

)
ω−σ

t z4,t

] 1−σ
σ
(

1
1 + z4,t

) 1
σ


σ

σ−1

.
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By using (C.14) to replace lS
x,t and (C.24) to replace lN

x,t in (C.23), we can rewrite (C.23) such that

z3,t

z2,t

1− α

α
ωt =

1−
[(

α
1−α

)−1
δσ−1

(
µS

µN

)−σ
ωσ

t z−1
4,t

]
lN
x,t

1− lN
x,t

=

1−
[(

α
1−α

)−1
δσ−1

(
µS

µN

)−σ
ωσ

t z−1
4,t

]
β

µNz1,tz2,t

(
z4,t

1+z4,t

) 1
σ
[Ξ(ωt)]

1−σ
σ (lN

x,t)
1−σ

σ (1− α)−
1
σ

1− β
µNz1,tz2,t

(
z4,t

1+z4,t

) 1
σ
[Ξ(ωt)]

1−σ
σ (1− α)−

1
σ

.

(C.25)
This equation implicitly solves ωt as a function of the four transformed variables {z1,t, z2,t, z3,t, z4,t}.
Similarly, using (C.14) and (C.23) to substitute for lS

x,t and lN
x,t, we can rewrite the four differential

equations of {z1,t, z2,t, z3,t, z4,t} such that

ż1,t

z1,t
= gL − (1− ξ)(κ − 1)(1− α)

{
z1,t

β
− 1

µNz2,t

(
z4,t

1 + z4,t

) 1
σ

[Ξ(ωt)]
1−σ

σ (1− α)−
1
σ

}
, (C.26)

ż2,t

z2,t
= ρ− gL +

1− α

β
z1,t

{
1−

[
µN +

1
z4,t

(µN − 1)
]

β

µNz1,tz2,t

(
z4,t

1 + z4,t

) 1
σ

[Ξ(ωt)]
1−σ

σ (1− α)−
1
σ

}
,

(C.27)
ż3,t

z3,t
= ρ− gL +

1− α

β
z1,t

{
1− β

µNz1,tz2,t

(
z4,t

1 + z4,t

) 1
σ

[Ξ(ωt)]
1−σ

σ (1− α)−
1
σ

}

−
α(µS − 1)(1 + z4,t)

[(
α

1−α

)−1
δσ−1

(
µS

µN

)−σ
ωσ

t z−1
4,t

]
γ

z1,t,

+

(µN − 1)(1− α)ωt
1+z4,t

z4,t

{
β

µNz1,tz2,t

(
z4,t

1+z4,t

) 1
σ
[Ξ(ωt)]

1−σ
σ (1− α)−

1
σ

}
γ

z1,t,

(C.28)

and

ż4,t

z4,t
=

{
(1− α)z1,t

β

(
κ − 1 +

κ

z4,t

)
− (1 + z4,t)

αz1,t

γ

(
1 +

1
z4,t

) [
z3,t

z2,t

1− α

α
ωt

]}
×
{

1− β

µNz1,tz2,t

(
z4,t

1 + z4,t

) 1
σ

[Ξ(ωt)]
1−σ

σ (1− α)−
1
σ

}
.

(C.29)

Due to its complexity, we resort to Mathametica for linearization and compute the eigenvalues of
the Jacobian matrix. The matrix takes the form of

ż1,t
ż2,t
ż3,t
ż4,t

 =


J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44




z1,t − z∗1
z2,t − z∗2
z3,t − z∗3
z4,t − z∗4



7



with
Jij =

∂żi,t

∂zj,t

∣∣∣
(z∗1 ,z∗2 ,z∗3 ,z∗4 ,ω∗)

+
∂żi,t

∂ωt

∂ωt

∂zj,t

∣∣∣
(z∗1 ,z∗2 ,z∗3 ,z∗4 ,ω∗)

,

where {i, j} = {1, 2, 3, 4}. Substituting the numerical values in our calibration into the Jacobian
matrix yields

J =


−0.1677 −0.0610 0.0079 0.0701
0.4407 0.6242 −0.0535 −0.2830
0.8073 −0.5173 0.4355 −0.9990
−3.3417 −1.5475 0.0077 −3.6304

 .

In this case, the eigenvalues for this Jacobian matrix are given by {−3.6737, 0.7192, 0.3880,−0.1719},
respectively. Therefore, the dynamics of this equation system is characterized by saddle-path sta-
bility, implying that the global economy is on a unique and stable balanced growth path.
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Appendix D : The variety-expansion model

To examine the robustness of our results, we consider an extension in which the process of
innovation is variety expansion, following the framework of Gustafsson and Segerstrom (2011).
The notations for the variables in the baseline model remain the same as their parallel counter-
parts in this extended model. Moreover, we focus on the steady-state equilibrium.

The production function of final goods is altered to

Yt =

{∫ mt

0
[xt(j)]

σ−1
σ dj

} σ
σ−1

, (D.1)

where mt is the number of intermediate-good varieties. Therefore, the demand function of xt(j)
is given by

xt(j) =
Yt

[pt(j)]σ
, (D.2)

where the price of final goods Pt ≡ {
∫ mt

0 [pt(j)]1−σdj}1/(1−σ) is normalized to unity. In this variety-
expansion framework, new products are invented and manufactured in the North, whereas old
products remain being manufacturing in the South once the technology of manufacturing these
products has been transferred. Therefore, the product cycle becomes one-way, implying that As-
sumption ?? no longer applies. The production functions and price strategies remain unchanged,
with patent breadth in each country determining the monopolistic prices. The profits for a typical
Northern monopolist and a Southern affiliate for any variety j ∈ [0, mt] are given by

πN
t = pN

t xN
t (j)− wN

t LN
x,t(j) = (µN − 1)wN

t
Yt

(µNwN
t )

σ
(D.3)

and

πS
t = pS

t xS
t (j)− wS

t LS
x,t(j) = (µS − 1)

wS
t

δ

Yt

(µSwS
t /δ)σ

, (D.4)

respectively, given that the monopolistic price and profit flow are identical across varieties. More-
over, Assumption 2 still holds to ensure that Northern monopolists are willing to shift their
production to the South, namely πS

t > πN
t holds.

To develop a new product variety, a representative Northern firm i devotes β/mξ
t units of

labor in innovative R&D activities. The flow of new products developed at time t is given by
ṁt(i) = mξ

t LN
r,t(i)/β. Thus, the aggregate flow of new products developed in the North is

ṁt =
mξ

t LN
r,t

β
, (D.5)

where LN
r,t ≡

∫
LN

r,t(i)di denotes the aggregate R&D labor in the North. Free entry into R&D
yields the zero-expected-profit condition for innovative R&D such that

vN
t ṁt(i) = wN

t LN
r,t(i)⇔ vN

t = βwN
t m−ξ

t . (D.6)
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Similarly, the number of varieties transferred to the South by the foreign affiliate of a Northern
monopolist is given by ṁS

t (i) = mξ
t LS

r,t(i)/γ. Thus, the aggregate flow of varieties shifted to the
South is

ṁS
t =

mξ
t LS

r,t

γ
, (D.7)

where LS
r,t ≡

∫
LS

r,t(i)di denotes the aggregate R&D labor in the South. Moreover, denote by
λS = ṁS

t /mt the rate of technology transfer. Free entry into R&D yields the zero-expected-profit
condition for adaptive R&D such that

(vS
t − vN

t )ṁ
S
t (i) = wS

t LS
r,t(i)⇔ vS

t − vN
t = γwS

t m−ξ
t . (D.8)

In addition, the no-arbitrage conditions that determine the values of vN
t and vS

t are, respectively,
given by

rtvN
t = πN

t + v̇N
t , (D.9)

and
rtvS

t = πS
t + v̇S

t . (D.10)

Next, we consider the labor-market-clearing conditions in the North and the South. The
Northern labor-market-clearing condition is given by

∫
mN

t

LN
x,t(j)dj + LN

r,t = θN
t mtL

N
x,t + βgm1−ξ

t = LN
t ⇔ θN

t mt
LN

x,t

LN
t

+ βgΦt = 1, (D.11)

where θN
t ≡ mN

t /mt is the share of varieties produced in the North, LN
x,t is the average Northern

production labor, and Φt ≡ m1−ξ
t /LN

t is the average productivity per Northern worker. The
Southern labor-market-clearing condition is given by

∫
mS

t

LS
x,t(j)dj + LS

r,t = θS
t mtL

S
x,t + γλSm1−ξ

t = LS
t ⇔ θS

t mt
LS

x,t

LS
t
+ γλSΦt

1− α

α
= 1, (D.12)

where θS
t ≡ mS

t /mt is the share of varieties produced in the South and LS
x,t is the average Southern

production labor.
In the steady-state equilibrium, Φt = Φ must be constant, which yields the growth rate of the

number of varieties such that g = ṁt/mt = gL/(1− ξ), and the condition such that ṁS
t /mS

t =
ṁN

t /mN
t = ṁt/mt. In addition, according to the rate of technology transfer λS = ṁS

t /mt, we
obtain the steady-state shares of varieties in the North and the South as follows:

θS
t =

λS

g
; θN

t =
g− λS

g
. (D.13)

To derive the steady-state innovative R&D condition, we take the log of (D.6) and differentiate
the resulting equation to obtain v̇N

t /vN
t = (1− ξ)g. Substituting this equation into (D.9) yields

vN
t = πN/(ρ + ξg). Then, combining (D.3) and (D.6) with the above equation yields the steady-
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state innovative R&D condition such that

(µN − 1)
mtL

N
x,t

LN
t

= βΦ(ρ + ξg). (D.14)

Similarly, from (D.8) we have v̇S
t /vS

t = (1− ξ)g. Substituting it into (D.10) yields vS
t = πS

t /(ρ +
ξg). Combining this equation with (D.4) and (D.6) yields the steady-state adaptive R&D condi-
tion such that

(µS − 1)
LS

x,tmt

LN
t
− (µN − 1)ω

LN
x,tmt

LN
t

= γ(ρ + ξg)Φ. (D.15)

Then, combining (D.11) and (D.14) generates the Northern steady-state condition such that

βΦ
[
(ρ + ξg)(g− λS)

g(µN − 1)
+ g
]
= 1. (D.16)

This equation is the counterpart condition against (46) in the sense that Φ is positively correlated
with λS. Additionally, the Southern steady-state condition is obtained by combining (D.11),
(D.12), (D.14), and (D.15), which is given by

ΦλS(1− α)

αg

[
δ(ρ + ξg)(γ + βω)

µS − 1
+ γg

]
= 1, (D.17)

which is also qualitatively similar to (47) in the sense that Φ is negatively correlated with λS.
In this case, equations (D.16) and (D.17) together determine a unique steady-state solution of
two unknowns {Φ, λS}, which is graphically illustrated as in Figure 1. Furthermore, dividing
(D.14) by (D.15) leads to the equation that pins down the steady-state relative wage rate, which
is identical to (54). Therefore, the static analysis of a change in µN or µS on the rate of relative
wage ω, the rate of international technology transfer λS, and the temporary innovation rate in
the North are robust to the counterparts in the baseline model.
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Appendix E : The model with trade costs

In this appendix, we extend the baseline model by incorporating positive trade costs between
the countries. Specifically, we follow Gustafsson and Segerstrom (2010) to assume that trade
costs take the "iceberg" form such that τ > 1 unites of a product must be produced and exported
in order to have one unit arriving at its destination. Again, we only illustrate the main parts that
are changed in this extended model.

To simplify the analysis, we assume that households consume differentiated goods produced
in both countries. The discounted lifetime utility of a typical household in economy i ∈ {N, S}
is given by

Ui ≡
∫ ∞

0
e−(ρ−gL)t ln ui(t)dt, (E.1)

where the static utility is given by

ui
t =

{∫ 1

0
[xi

t(j)]
σ−1

σ dj
} σ

σ−1

. (E.2)

Solving the consumer’s utility-maximization problem yields the individual consumer’s demand
function such that

xi
t(j) =

[pi
t(j)]σEi

t

(Pi
t )

1−σ
, (E.3)

where Ei
t is the per capita consumer expenditure in country i at time t and Pi

t ≡ {
∫ 1

0 [p
i
t(j)]1−σ}1/(1−σ)

is an index of consumer prices. Maximizing (E.1) subject to (E.2) where (E.3) has been used to
substitute for xi

t(j) yields the Euler equation such that

ĖN
t

EN
t

=
ĖS

t

ES
t
= rt − ρ. (E.4)

In this extension, we focus on the steady-state equilibrium where both wage rates and consump-
tion expenditures are stationary over time (i.e., wN

t = wN , wS
t = wS, EN

t = EN , and ES
t = ES) , so

using (E.4) implies that rt = ρ. In addition, the Southern wage rate is chosen as the numeraire
price (wS

t = 1), so all prices are measured relative to the price of Southern labor. Then the wage
rate of the North relative to the South is given by ω = wN .

In the presence of trade costs, Northern consumers face different prices than Southern con-
sumers. This alters the pricing strategy of Northern quality leaders and Southern affiliates. The
condition ωδ > 1 is changed to ωδ > τ to take into account the additional transportation cost,
and Assumption 1 is altered to ωδ < τ(z/µN) for ensuring the two-product cycle.

To derive the profits of Northern leaders and Southern affiliates, we first show the demand
functions of Northern and Southern consumers. On the one hand, the demand of a North-
ern consumer for a domestically produced product is xNd

t = [pNd
t (j)]−σEN/(PN

t )1−σ and the
demand for an imported good (exported by the South) is xS∗

t = [pS∗
t (j)]−σEN/(PN

t )1−σ. Thus,

the Northern price index is given by PN
t =

{∫
θN

t
[pNd

t (j)]1−σ +
∫

θS
t
[pS∗

t (j)]1−σ
}1/(1−σ)

. On the

other hand, the demand of a Southern consumer for a domestically produced product is xSd
t =
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[pSd
t (j)]−σES/(PS

t )
1−σ and the demand for an imported good (exported by the North) is xN∗

t =

[pN∗
t (j)]−σES/(PS

t )
1−σ. Thus, the Southern price index is PS

t =
{∫

θN
t
[pN∗

t (j)]1−σ +
∫

θS
t
[pSd

t (j)]1−σ
}1/(1−σ)

.
In the presence of trade costs, the Northern quality leader in industry j ∈ [0, 1] sets the domes-

tic monopolistic price pNd
t (j) to µNω/[znt(j)] and the export price pN∗

t (j) to τµNω/[znt(j)]. Given
households’ demand functions, the monopolistic profit of a Northern quality leader comprises
of domestic and export profits such that

πN
t (j) = (µN − 1)

ωqt(j)
(µNω)σ

[
τ1−σLS

t ES

(PS
t )

1−σ
+

LN
t EN

(PN
t )1−σ

]
. (E.5)

The Southern affiliate sets the domestic monopolistic price pSd
t (j) to µS/(δznt(j)) and the export

price pS∗
t (j) to τµS/(δznt(j)). Given households’ demand functions, the monopolistic profit for a

Southern affiliate is given by

πS
t (j) = (µS − 1)

qt(j)
δ

(
δ

µS

)σ [τ1−σLN
t EN

(PN
t )1−σ

+
LS

t ES

(PS
t )

1−σ

]
. (E.6)

Moreover, the labor demands for an average-quality product produced by a Northern leader is

LN
x,t =

∫ 1

0
LN

x,t(j)dj =
τLS

t ES
∫ 1

0 qt(j)dj
(PS

t )
1−σ(µNωτ)σ

+
LN

t EN
∫ 1

0 qt(j)dj
(PN

t )1−σ(µNω)σ
=

Qt

(µNω)σ

[
τ1−σLS

t ES

(PS
t )

1−σ
+

LN
t EN

(PN
t )1−σ

]
,

(E.7)
whereas the labor demands for an average-quality product produced by a Southern affiliate is

LS
x,t =

∫ 1

0
LS

x,t(j)dj =
τLN

t EN
∫ 1

0 qt(j)dj
δ(PN

t )1−σ(µSτ/δ)σ
+

LS
t ES

∫ 1
0 qt(j)dj

δ(PS
t )

1−σ(µS/δ)σ
=

Qt

δ

(
δ

µS

)σ [τ1−σLN
t EN

(PN
t )1−σ

+
LS

t ES

(PS
t )

1−σ

]
.

(E.8)
Using these equations, the labor demands for product j are expressed as

LN
x,t(j) =

qt(j)
Qt

LN
x,t; LS

x,t(j) =
qt(j)
Qt

LS
x,t. (E.9)

The behaviors of innovative and adaptive R&D sectors follow exactly those in the baseline
setup. Following the derivation in the baseline model, we can show that equations (17)–(47)
continue to hold. Therefore, in this extension of positive trade costs, there still exists a unique
steady-state equilibrium pinning down the values of Φ and λS, given that the steady-state relative
wage ω is a function of the patent instruments {µN , µS}. However, the steady-state relative wage
equation (54) is changed. From (E.7)–(E.8), we obtain

LN
x,t

LS
x,t

= δσ−1
(

µN

µS

)−σ

ω−σ

 τ1−σ LS
t ES

(PS
t )

1−σ +
LN

t EN

(PN
t )1−σ

τ1−σ LN
t EN

(PN
t )1−σ +

LS
t ES

(PS
t )

1−σ

 , (E.10)

Combining (44) and (45), together with (E.10), yields the equation determining the steady-state
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relative wage rate such that

γ

βωσ
+ ω1−σ = δ1−σ

(
µN

µS

)σ
µS − 1
µN − 1

 τ1−σ LS
t ES

(PS
t )

1−σ +
LN

t EN

(PN
t )1−σ

τ1−σ LN
t EN

(PN
t )1−σ +

LS
t ES

(PS
t )

1−σ

 (E.11)

where

PN
t =

{∫
θN

t

[pNd
t (j)]1−σdj +

∫
θS

t

[pN∗
t (j)]1−σdj

} 1
1−σ

=

{∫
θN

t

[
µNω

znt(j)

]1−σ

dj +
∫

θS
t

[
τµNω

znt(j)

]1−σ

dj

} 1
1−σ

=
(

QN
t + τ1−σQS

t

) 1
1−σ

(µNω),
(E.12)

PS
t =

{∫
θN

t

[pS∗
t (j)]1−σdj +

∫
θS

t

[pSd
t (j)]1−σdj

} 1
1−σ

=

{∫
θN

t

[
µSω

δznt(j)

]1−σ

dj +
∫

θS
t

[
τµSω

δznt(j)

]1−σ

dj

} 1
1−σ

=
(

τ1−σQN
t + QS

t

) 1
1−σ

(
µSω

δ

)
.

(E.13)
Define by η ≡ (LN

t EN)/(LS
t ES) the aggregate consumption expenditure of Northern households

relative to Southern households. Then (E.11) can be rewritten as

γ

βωσ
+ ω1−σ = δ1−σ

(
µN

µS

)σ
µS − 1
µN − 1

 τ1−σ/η

(τ1−σQN
t /Qt+QS

t /Qt)(µS/δ)1−σ
+ 1

(QN
t /Qt+τ1−σQS

t /Qt)(µNω)1−σ

τ1−σ

(QN
t /Qt+τ1−σQS

t /Qt)(µNω)1−σ +
1/η

(τ1−σQN
t /Qt+QS

t /Qt)(µS/δ)1−σ


︸ ︷︷ ︸

Ω
(E.14)

Comparing (E.14) to (54), it can be seen that the only difference comes from the aggregate term
Ω in the bracket. When τ = 1 (i.e., a zero transportation cost), (E.14) is reduced to (54). In this
generalized version, (46), (47) and (E.14) together constitute a system of equations that solves for
three endogenous variables {Φ, λS, ω}.

Therefore, the static analysis of a change in µN or µS on the rate of relative wage ω, the rate
of international technology transfer λS, and the temporary innovation rate in the North are still
robust to the counterparts in the baseline model. More importantly, a decrease in trade costs
τ leads to no changes in the rate of international technology transfer λS and the temporary in-
novation rate in the North, but an ambiguous impact on rate of relative wage ω. Specifically,
making use of (E.11), it can be shown that a decrease in τ leads to a permanent increase (de-
crease) in ω if the North is larger (smaller) than the South in terms of purchasing power (i.e.,
LN

t EN/(PN
t )1−σ > (<)LS

t ES/(PS
t )

1−σ).
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